

Product Datasheet

Order: order@ebiocell.com

TEL: (540)808-3925

tech@ebiocell.com Supprt: Web: www.ebiocell.com

Phospho-AS160 (Ser318) Rabbit Polyclonal Antibody

Catalog #: EAB11570

Host/Isotype	Clonality	Applications	MW (kDa)	Reactivity
Rabbit IgG	Polyclonal	WB	147	Human, Mouse, Rat

Applications Dilutions

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user. 1:500-2000

WB(Western Blotting)

Product Information

Conjugate Unconjugate

Phospho-AS160 (Ser318) Rabbit Polyclonal Antibody detects endogenous levels of AS160 only Specificity

when phosphorylated at Ser318.

Purification Affinity purification

Concentration 1mg/ml **Format** Liquid

Formulation In PBS, pH 7.4, Containing 0.02% sodium azide, 0.5% BSA and 50% Glycerol

Shipping

Store at -20°C least 1 year from the date of shipment. Avoid repeated freeze/thaw cycles. Storage

Aliquots may be stored at +4°C for 1-2 weeks

UniProt ID O60343 **Entrez-Gene Id** 9882

Product Description

This gene is a member of the Tre-2/BUB2/CDC16 domain family. The protein encoded by this gene is a Rab-GTPase-activating protein, and contains two phopshotyrosine-binding domains (PTB1 and PTB2), a calmodulin-binding domain (CBD), a Rab-GTPase domain, and multiple AKT phosphomotifs. This protein is thought to play an important role in glucose homeostasis by regulating the insulin-dependent trafficking of the glucose transporter 4 (GLUT4), important for removing glucose from the bloodstream into skeletal muscle and fat tissues. Reduced expression of this gene results in an increase in GLUT4 levels at the plasma membrane, suggesting that this protein is important in intracellular retention of GLUT4 under basal conditions. When exposed to insulin, this protein is phosphorylated, dissociates from GLUT4 vesicles, resulting in increased GLUT4 at the cell surface, and enhanced glucose transport. Phosphorylation of this protein by AKT is required for proper translocation of GLUT4 to the cell surface. Individuals homozygous for a mutation in this gene are at higher risk for type 2 diabetes and have higher levels of circulating glucose and insulin levels after glucose ingestion. Alternative splicing results in multiple transcript variants encoding different isoforms.